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I. INTRODUCTION

The parallel-plate simulator [1] is an important device for
EMP testing and has been investigated by a number of authors [2-8].
However, all of the previous analyses of this problem have been limited
to the investigation of leaky modes in such open waveguides and the source
excitation problem of such waveguides has not been previously discussed
in the literature.

It is well kmown [9] that the leaky wave expansion of a source-
excited field is an approximation to the exact, continuous spectrum
representation.* Thus, an investigation of the complete solution
expressed in terms of the continuous spectrum representation is useful
from the point of view of evaluating the accuracy of the leaky wave
representation.

The present study represents a first step toward this goal. In
this work we derive the solution to the source excitation problem for an
excitation function which is assumed to have an eiBz variation along the
longitudinal (z) direction. Such an excitation can be interpreted as one
spectral component of a transversely confined source, and the solution
to the confined source problem can be subsequently constructed by an

appropriate superposition of the spectral solutions derived in this paper.

* Note that in contrast to surface wave type of structures the open
parallel-plate waveguide configuration admits no discrete modes in
the proper sheet.
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The organization of the report is as follows: Section II
presents the statement of the problem we wish to investigate.
In SectionIII we formulate the integral equations and present the
solution of these equations in Section IV. Section V is devoted to the
calculation of the vector potentials which are useful for the derivation
of the fields. In Section VI we investigate the special case when
only the zero mode can propagate in the guide and derive the resonance
condition for leaky modes. Finally, in Section VII, we discuss the

case when more than one mode can propagate in the guide and present

a summary of the results in Section VIII.




II. STATEMENT OF THE PROBLEM

In this work we address ourselves to the problem of source excitation
of an open waveguide when the source is located inside the waveguide. The
open waveguide is formed by two parallel, perfectly conducting strips:

-2L < x <0, y =% H (see Figure 1).

We will investigate two types of sources, viz.,

Case A
J = y8(x + xo) sin g%x) eiBz o Here Ni= X5 2,5 504 (2.1)
Case B

T = yo(x + x,) cos (%—;;1) BPE heva w0 1,3 .. (2.2)

where the current J has only a y-component. The time factor exp(-iwt) is

implicit throughout this report. We assume that Ref > 0 and Img = 0.




Fig. 1

Geometry of the problem of source excitation
of a parallel-plate waveguide.
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ITI. BASIC FORMULATION

We begin with Maxwell's equations:

V;x E - dwuH = 0 (3.1)
Vix H+ dweE =T . (3.2)
where
2 2 2 2
Vi=32+32+82=vz+—82 -
9x ay 9z 9z

The electromagnetic fields may be expressed in terms of a vector potential

function'K(l) by means of the following equations:
s <(1)
H = o le A (3:3)
v _(1) - 1 V9. =(1)
E = iwA el | A s (3.4)
where‘X(l)

is a solution to the following inhomogeneous equation:

1)

fo(l) + wzeﬁz(

=aud (3.5)
Since the excitation current has only a y-component, we may let K(l) = A;‘)y

and express the various field components in terms of Aﬁl) as:

1 32A;1)
By & ey %0y (3.6a)
2,(1)
9°A
E e dud™ ol o (3.6b)
y y iwep 5 2
y
5 BZA)EI)
Ez oA iwep i 9y dz (3.6¢)
BA(l) aA(l)
Hx = - —35—— : Hy =0 3 Hz = ~3§—— ¢ (3.6d)
6
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A§1) satisfies the inhomogeneous wave equation:
2,(1) 2 (1)
VJA + A = -uJ . 3.7
14y w enAg Wy (3.7)

(1)

We look for the solutions of (3.7) having the form Ay ifs

= Ae . The reduced

potential A satisfies

VA + kA = -uI (3.8)
where k2 = mzsu - 82, and
sin (%ﬁ%-) for case (A) N=1, 2, ... :

I=6(x+x& cos -Nz—"}%) for case (B) N=0,1,2,... ;

Enforcing the boundary condition on the tangential E-field at the

plates, we have
22 =0 S R T (3.9)
For mathematical convenience we initially assume that ¢ has a small

imaginary part, with Ime > 0, intending to let Ime > O after the derivation

of the solution is complete. We then have

N T
k=Vw'ep - B kl + ik2 s (3.10)

" .

1’ k2 > 0.

We next proceed to derive the solution to the problem at hand using the 1

where k

Wiener-Hopf technique. To this end we define the transformed function ¢ as

oo

d(a,y) = J A(x,y)e

00

e P (3.11)

where o is the Fourier transform variable. Since the region |y| > H is

source free,we have ¢ satisfying the differential equation
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—2 - Y o=0 s Y= Na" - k - (3.12)
oy

which admits solutions of the form
o(a) = c3eYy for y < -H (3.13a)
o(a) = <:4e_Yy for y > H (3.13b)

with the requirement that

Rey = Re (Vaz - kz)-»+°o as a > % o .

Figure 2 shows the branch cuts for y in the complex a-plane. Taking the

principal branch we get

L5
= V/[a - k||a + k[ e and (3.14)
y =1 fk® ~o?  for [a] < [k . (3.15)

In the region interior to the waveguide, i.e., for |y| < H, the differential

equation for ¢ takes the form

32 2 sin (F_g%) —iaxo Case (A)
—"2-"‘)' d=-u { N \ e (3-16)
Ay cos 'Z_Iiz) Case (B)

rsin(m) Case (A) N=1,2,...

o(y) 7+ oge Y , -
Lcos 12‘—;1) Case (B) N=0,1,2,...
(3.17)
8
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Branch cuts in the complex a-plane.

qy




e

N 2 an i (3.18)
zu)

The coefficients < and <, will, of course, be different for the cases

A and B. Since

8% _ j 9A iox
ay ~d 7y e ax . (3.19)
from (3.13a) and (3.19) we have:
pel 7 iax -YH
lw e dx = cjYe ¥ (3.20)
= y=-H-0
Let
% "‘1’2;% "1'1 for -» < x < -2L
b y = -H y y = H
(3.21) -
JA JA
— = x R L for 0 < x < =
oy 3 2’ 93y " 1
Then from (3.9), (3.20), (3.21),
-2L o
{ wzeiax dx +j xzeiax dx = cyve 8 (3.22)
- J
; iz ?
i
i or
; -2L o ]
-1 YH g
; g ™ ¥ @ J- wzeiaxdx P 6 xzeiaxdx % (3.23)

Using the inverse Fourier transform,we finally obtain the representation of

A(x,y) for y < -H:

1




+ib -2L
- - i
A(x,y) = '2—1,; I Y 1eYHewe iax I wzeiaede + I Xqe aEdE
-o+ib
(3.210)
Similarly for y > H we have:
; -2L
wt+ib iak iaf
- H - -io e dg + e dg
Alx,y) = - 7 y etV mlaxy, I V1 £ Xy
-0
~=ib (3.25)
where
-k2 < b < k2 .
Letting y = * H, we obtain from (3.9), (3.17), (3.19):
RS SRR W
Il Ye e Ye,e + TN 20 N (3.26)
-sin'
Y
- P" (N
i
- - i, = Hxo}eosofee
12 ye,e ye,e TN 7H \ 2 (3.27)
sin B
2
=
where
_2L ©
iax iox
I1 =_w wle dx + I Xq@ dx (3.28)
-2L :
o= [ y,el®ax + [ yel%y (3.29)
g8 e %

where cq and c, are constants, given by [see Appendix II]:

-

H . 2 ONE

1 i + T ot 2

s ol . vy -cos(N—;) sinh(y}t)]L

1=

2 sinh (2YH)y 1 2 N 2H

sin (E;_l) cosh (yH)J )

(3.30)




e ——

P

cos (!¥5 sinh (YH)

1 I e'-YH

c, = L - . 2
2 2 sinh (2yH)y 1

= I,8"" & T o=
: %3 sin (!211) cosh (yH)

(3.31)

In the interior region |y| < H we have

~+ib .

A(x,y) = 5% I o(a,y)e 1 ¥¥4q
—ot+ib
wt+ib o
== f I, cosh{y(y+H)] - I, cosh((y -H)Y] } =~ da
o 1 2 Y sinh (2yH)
wo+ib
L :
otib {-- cos _I%r_ sinh (YH) sinh (Yy)L‘.f‘ e-iax
L1.Nt o, .

+ N da
2m 2H Sk L sin -7'"- cosh (YH) cosh (yy)JY sinh (2YH)

r
1 | sin (%%Z) i g
*zE s Ty © da . (3.32)
cos (?I.{l) .

-o+ib

Imposing the boundary conditions:

A(x, + H - 0) —¢=°<x<-2L‘s
for and

A(x,+ H + 0) (3.33)

0 < X < )

A(x, -H+0) = A(x, - H - 0)

we derive from (3.24), (3.25), (3.32) [see Appendix III] for -» < x < -2L,

0 < x < o ;

~2L © <25
* 5 fe
J k™ lx - e]ag + I x Kk | x - gl - J Wk (klx - ]yag
00 0 -0
. f xzké*)(k|x - €])dg = f{*)(x) (3.34)
&
and

12




y i -2L L] -2L
[ v kS (k| x - gag + f XK G| x = £ g - f v,k e x - g))ae
0

- 00 -0

-o+ib

! . *
n - [ kil - ehae = £, (3.35)
0
where
o+ib
2Hy
(*) o e ia (g - x)
._ Ky “(klx - 2]) =5 J T simh 2 © do (3.36)
: ; ~oot+ib
E |
: i wtib
. (*) o 1 ia(E - x)
K, (k|x - &) 5 I T STan (2 © da (3.37)

ot+ib .-cos (N—Tr) tanh (yYH) o~ e-iax

2 T
| (*) o N
; f]‘ = 4H ’N1r ¥ P
| -o+ib | sin (T) coth (yH)

sin (%"—) o+ib

-+ f T o ey (3.38)
m N7 N
cos (—) - +ib
2 y
N
{ o4+ib cos (—2—) tanh(yH) | 7 -iox
| T. e
M)« - L L da
2 4H N %

| -o+ib sin (7) coth(yH)
| \
| - sin (%1) ot+ib
| L
| - = T e 0%y, . (3.39)
{ m N N
! cos \5 -o+ib
%
. Adding (3.34) and (3.35) we obtain

13




-2L w
f Y, (K, (kfx - g])dE + f Z, (80K, (k|x - £])dE = £, (%) (3.40)
0

-0

Y (8) =y, -,

Zl(E) =X "X

o+ib YH
* * 1 i -
R Gelx - €)= kP fx- gD+ k(P efx - €y = & J e ele(E Wy,

-o+ib

(3.42)

(3.43)

(N) o N = coth(yl) ~fax. 1
Fl (x) 20 sin 2 f TN 5 e do 7 cos

—o+ib

(3.44)

Equation (3.40) represents one of the integral equations we have been

seeking to derive. The unknownsin this equation are Y1 and Z1 and fl(x) is

a known function related to the source.
Next we subtract (3.35) from (3.34) to get:
..2L oo

f Y, (£)K, (k| x - £])dg + f Z,(E)K,(k[x - £])dE = £,(x)
- 0

where
Y08 = v+,

Z,(8) = X1+ X




o+ib
*
Kz(klx -£]) = K{ )(klx -g]) - Kg*)(klx - £]) "%; I

—wtib

eYHeia(E-x) %
y cosh(yH)

(3.47)
FéN)(x) Case A
f2(x) 0 Case B (3.48)

o+ib

(N) e N ~ tanh(yH) -iax, 1
F2 (x) 25 €°S (ﬂ[ TN -~ e do -
—o+ib

(3.49)

which is the second integral equation we have been seeking. Thus,in summary,

we have reduced the original problem to that of solving a pair of integral

equations (3.40) and (3.45) with four unknown functions, viz., ?KE), %{5),




IV. SOLUTION OF THE INTEGRAL EQUATIONS

As a first step we rewrite the integral equations (3.40) and (3.45)

as:

i g T £,(x) =w<x<-2L, O<xew H
f Yy (OK, (k[x - &£])de + f 2, (K (k[x ~ £])de <
0

- e;(x) -2L<x<0
(4.1)
and
2L .
] Y, (DK, (k|x - £])de + f 2, (), (k|x - g])dE =
0

-0

fz(x) —o<x<=2L, O<x<e

ez(x) -2L<x<0

(4.2)
where we have deliberately introduced two new unknown functions, viz., el(x),
ez(x),in order to extend the range of x from -» to +», This is important
for the next step which is to multiply (4.1) and (4.2) throughout by
exp(iax) and integrate with respect to x from -« to ». This gives

"ZL 0
J Yl(g)ei°5de-x3(a) + J Zl(g)eiagdg-K3(u)
0

-—00

_ZL )
= f fl(x)eiaxdx + f el(x)eiaxdx + f fl(x)eiaxdx (4.3)
—0o -2L 0

and

-ZL oo
f ¥, (8)e'*dek, (a) + f 2,(6)e'**ag K, (o)
-0 0
‘ZL oo
- [ fz(x)eiaxdx + f ez(x)ei“xdx + f fz(x)ei“xdx (4.4)
e 2L 0




where

YH YH

e e
l(3(0‘) . Yy sinh (yH) °’ Kb(a) - y cosh (yH) (4.5)

are analytic in the strip —kz < Ima < k2'
Defining the transforms of the unknown functions in (4.3) and (4.4)

and indicating their domains of analyticity, we have

o, (@) = f g e S (4.6)
0
~2L
o_@ = [ v @M, 4.7)
v, (@ = j z,(8)e'%ae 4.8)
0
-2L
b o) = f ¥ i (4.9)

where the functions Q}a), {éa) are analytic for Ima > -kzand Q_Ka),

w__(a) are analytic for Ima < k We can also write the transforms of the

2

known functions fl(x) and fz(x) in the range -» < x < -2L as

-2L
H (@) = J £ (x)e " i = e'i"‘z"uj_m) (4.10)

where j = 1, 2 and

-2L
Hj_(a) = f fj(x)e

1a(x+2L)dx X (4.11)

Likewise for the range 0 < x < » we have the transform

17




: iax
& HJ_._(a) £ f.‘l (x)e” “dx

where

e

0 X Case A

“(N)(a) . Case B

where the superscript (N) is associated with the excitation function and is
defined in (2.1) and (2.2). To obtain the expressions for Hlt (o),

we have to calculate the functions fl (x) for two cases: (a) -» <x< -2L
and (b) 0 < x < ». We also need to perform these calculations for N both
even and odd. For Case (A) we need to close the contour with a semicircle
in the upper half plane, whereas the closure for the second case is in the

lower half plane. Substituting the results of these calculations in

(4.12), we obtain the final expressions for ﬁiil) and ﬁ{il-l) , which
read: »
ia’x v ia”(2L-x.) 3
v (20) E "1] 20 [ ] g \ |
H (a) = (-1) e e (4.14)
3 by U.O : !
R @y Ly e
Y Lo

'n \(22 ! l)2 k(a * k)

A Q’ 1/2 - i
,/'1] fa”x, '0] io” (2L-x, \
: e

w0 1 ‘ (4.15) .

L= X250

= iog (2L-x,) o
+ LO} e * - e z
¥ n=1

Ko . 3




Note that we have neglected the exponentially decaying terms by retaining

only n., terms in the summation. The integer 0y satisfies the conditions:

1

n,m (nl+l)1r

=<k, —m——rsk . (4.16)

We can also show that

ﬁ(N)(a) 5 Case A
H2t(a) = (4.17)
0 ’ Case B

where

I+
S~ B
N

H2D @) =+ b 2 2 -

n=1 (n e !-_) o’ G_ _(9'____> & *
T S 2 n-l/ZL n - 1/2 n—l/2’
E ) O 0 (2L-x ;)
[.0] g T [1:} i (4.18)

and n, is determined from the condition

2
(n2 - 1/2)m (n2 + 1/2)w
________.._H <k RS IR > k (4.19)
and
¥2-D oy 2w ¥, 1 [1‘ o BUTY lﬂ Ve
2% @y 1/2 (u + al—l/Z) OJ i
0= 1,2,.-- (4.20)
Utilizing the definition of various transforms,we rewrite (4.3) and
(4.4) as:
1 g (w)+0,(a) - vOH M ()0, (a) = %‘1“2" Hy (o) + H (u.)] v (@)

(4.21)

19




e )

s

UR———

é
|

ey (@) + ¥, () - vy (@), (@) = [~a‘i°‘2’“ H, (a) + u2+(a>] YM (a) (4.22)
where
0
2, (a) = [ e, (e ax (4.23)
2L
0
b (@) = f e, (x)e *ax (4.24)
2L

_ ,~YH sinh(yH)
T R VA (4.25)

M, (@) = o B el OVl) |, (4.26)

The next step is to factorize the functions Ml(a) and Mz(a) in the form of

products,

Ml(a) = M1+(a) Ml_(a) (4. 27)
Mz(u) = M2+(a) Mz_(a) (4.28)

where M1+(a), M2+(a) are regular and non-zero in the upper half plane
v -l&, whereas Ml_(a), Mz_(a) are regular and non-zero in the lower half

plane 7 < k Then, multiplication of (4.21) by

2
e+ia2L
(@ -10M_(a)

and (4.22) by
ia2L
e

vo~k M2_(a)

leads to the following coupled equations in the transform domain:

20

e A L R L AR RND 5 A I P4 7 S -




ia2L
d-. (a) ¢+(a)e
(a=T)M, RORECE kM, _(a)

ia2L

- (a+ k)HM1+(a)¢1(a)e

ia2L (4.29)

= (a+k)HM1+(a) H (a)+(a+k)HMl+(a)Hl+ (a) e

1-

and

y_(a) l#+(ot)ei°‘21‘
+

va - k MZ- (o) va - k MZ_(a)

ia2L

- Yo + k M2+(a)w1(a)e

= VaFK My, () Hy_(a) + VAFK My, (B, (@)e
(4.30)
The first terms on the left-hand side of (4.29) and (4.30) are regular in
the lower half plane, whereas the third terms on the left-hand side and the
second terms on the right-hand side of (4.29) and (4.30) are regular in the
upper half plane.

To solve these equations we carry out the decomposition

o2 %@

Too_@ "~ M@ FR@ (4.31)
(a+K)HM, (a) B (@) = 8 (@) + 5 _(a) (4.32)
g L Q, (@) + Q_(@) (4.33)

Vo -k M, ()
itk My, (a) Hy (a) = S, (@) +5, () . (4.34)

Using the method of factorization we obtain the equations:

¢ (a)

?;jjisﬁzjfzy 4R (a) -8

L}
o

(a) (4.35)

1-
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i s CAME o s WA sl

! e @) - S, (a) (4.36)
—_— + Q (o) = a) =0 -
g Vo - kMz_(a) e 2-
where
; idt=  ig2L 0, (@)
o) = - ot @ oM_@ - & o
id-e
; id+e eich%(c)
Q_(a) = o 3 dg (4.38)
" e B KM, (2)(5-a)
1
(c+ k)M, . (g) H, (¢)
~ 1 14 2=
8, (@) = - 5= s dz (4.39)
id-e
id+oo
= e v’c+kMz+(c) H,_(¢) § o Sk
2- 27i T -a y

id-e

T<idi< k2 s, T = Imo

 After multiplying (4.21) by 1/[(a+k)M; (@)] and (4.22) by I/ [/a+k M,, (a)]

we obtain:
¢+(a) e-ia2L¢_(a)
@HIOM (@) * @+b) @

- (=M _ (@0 (@) = e M (@) (om0 Bry_(2)

+ H1+(a)(a - k)HMl_(a) (4.41)
and

~i02L g
Uy (o) 4 e Y- (@) - va - k Mz_((l)'bl(a)
Yo + k M2+(a) Yat+k M, (a)

= 1%y, (Ve kM, (a) + Hyp()Va =k M, (@) . (4.42) .

22
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Note that the first terms on the left-hand side of (4.41) and (4.42) are

regular in the upper half plane; the third terms on the left-hand side

and the first terms on the right-hand side are regular in the lower half

plane.

We now use the decompositions:

e-ia2L¢_ (a)
(a0 + k) M1+(a)

= U+(a) + U_(a)

e-iGZLw_ (o)
= e+(a) + 6_(a)
Yo+ k M2+(a)

Hp, (@) (o - RHM_ (@) =V, (a) +V)_(a)

H2+(a)1a -k Mz_(a) = V2+(u) + V2_(a)

Substituting (4.43) into (4.41) and (4.42) and using the Wiener-Hopf

technique [10,11) result in the equations:

d>+(a)
(o +-k)Ml+(a)

o

+ U+(a) - Vl+(a) =

; < (@) (@)
1 S ORISRV (e
: Va + k M2+(a) by _ 2+

o

where

icte e-lC2L¢_(C)

+*) = 7ni f @+ M @O
1c=a

icte e_iCZLw_(C)

-G)

o te Kk M,, () (T

ic-

dg

dg

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

43a)

43b)

43c)

43d)

44)

45)

46)

47)




1T L (0 @ - 0m_(©)

1
FORE— ] s i, (4.48)
ic-=
icte
1 Hu () -k M, ()
Vo, (a) = 5= j g d , (4.49)
ic-=
-k2 < e <7 .

The above manipulations have resulted in four coupled integral equations

(4.35), (4.36), (4.44) and (4.45) each of which contains two unknowns. We
now proceed to derive a set of new equations each with only a single unknown.
To this end, we replace a by -a in (4.35) and (4.36) and ¢ by (-Z) in (4.46)
and (4.47). Using the representations v-a+k =i Vo -k, V-a -k = -iva +k, J
adding and subtracting the resulting equations and defining
514 (@)} .
= ¢+(a) 0 (-a) (4.50a)
D. ., (a)
ST e 1
v R
Sg4(®)
=¥, () £ y_(-a) (4.50b)
D,, (a)
W
We obtain the two sets of coupled equations 5
7= g id+4
151+(°" : 1 R g P 14
(@ +k)IM, (a) ~ 27i (& = OB, (LIt * a)
L P14+(®) AR 1d=o (P14+®) 5
&
V.. () F5_(-a)| =0 (4.51) i
1+ = 5
s, (a) s 1g2L :
2+ F i 2 i 2+ e dg
2mi
| Dy, () Ya+k My, (o) tdie [P2s®)] KMy ()G + @) E
f s ~
f iV2+(a) + Sz_(—a) i SO (4.52)
é; 24




It is shown in Appendix IV that for k2L >> 1 the integrals appearing

in (4.51) and (4.52) can be evaluated in a series form as follows:

* 1dh
1 Sl+(C) eicZL

2ni

dc
@ - OM_(© (@ + )

1d-= [P14+(%)

S, () em“ul RO

1 +% B/ B T (a +lW_y [-121.«: +k)]\

~ (a + k)
Pratl
ia”2L
(s (a%) ¢ T M (@)a +5
1+'\°n I+ n’ ~n
o Moo (4.53)
n=1 D1+(°r:? = 2y
and f
|
id+e (-
. f o B i |
i P BT M (@) (s t+a) |
id- : 2 |
i Tt |
Tw O ALy (i) oK ROR T
Dy, (k)
i 1a;_1/22L e
J107 P Mo+ Cac1jp) Pa1jp T X (4.56)
™ U W @+ 1/2%-112 .
2+ 'n-1/2

Substituting the various series expressions given in (4.53), and (4.54) into

(4.51) and (4.52) gives: |

- ik2

s,,@] §,,. (k) e '“M1+(k)
g e Y

D1+(a? D1+(k? |

LIS +-% e_13/4" Y2k V2L (a + k) W_l[}iZL(a + ki]
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ia&ZL
Sl+(an) e Ml+(an)(an +8) §

TV, (@) + 5, (-a)|)(4.55)

= a’(a + a?)
D1+(a'n) n n

-
3 So4 (@)

=7 1A T K My, ) e 13/4m s LW, [-12L(a +k )]
D, (@)

Sor(ai_1/2)
Dyylag_1/2)

B
n-1/2
M, (o 1/2)' n1/2 ¥ K

a;_l/z(a + a 1/2)

+ [+ iV (u) + S _(=a)]

é4.56)
Our next step is to obtain the expressions for the vector potentials which
depend on the unknown functions ¢ _(a), ¢+(a), w+(a), ¥_(a), and which are
in turn expressed in terms of the functions Sl+(a), D1+(a), 82+(a), D2+(a).

From (4.50) we have
o, (o) =% [$; (@) * D, ()] (4.57a)
¥, (+a) =% [S,, () + D, (a)] . (4.57b)
Changing o + -a in (4.57) yields

¢_(a)=%[S, (-a) - D, (- (4.58a)

v_(a)=%[S, (-@) - D, (- . (4.58b)

We can rewrite (4.57) and (4.58) as:

9, (o) = %08, , (*a)

re

v (@) =%[S,, (+a)




To obtain the expressions for Q+(a) and w+(a),we need to substitute
(4.55) and (4.56) into (4.59). Likewise ¢_(a) and y_(a) are obtained by
changing a + -a in (4.55) and (4.56) and substituting the results in (4.59).

Following these steps we derive the equations:

- ik2L

ot k

6, (a) = t-;'-(a £ M, (a)

1 e BT R VR (o 0 W Fi2LG £ ) |
” By 3 iur‘lZL
g Z1 [D1+(an) + Sl+(an)]e Ml+(an) (an +k)
n=1 a;(a tG;)
V1+(a)
+ 2 -gl_(a) 3 (4.60)
and
i Ya = k MZt(u) . : 3
o i [1] e O E’z+(k) » s2+(k)]

. % « I W_, [ 12L(a ¢ k)]e1k21'142+(k)

ia” 2L
n A 5 & n-1/2 - -
21 ZZ G Dysl®p1y2) * s2+(°‘n-1/2)] s Mo+ Ca-1/92V o170
H a’ (a0 + 0” )
n=1 n~1/2 n—1/2
i) (4.61)
o §’2_ (a) ; ;

The last two equations provide us with the expressions for the functions
¢, (a) and tp+(u). They depend on the group of constants [Sl+(k), D1+(k),

Sz+(k), D2+(k)] and also on [Sl+(a;), Dl_’_(a;‘), SZ(G:;-l/Z)’ D2+(a!‘1_1/2)].




We can express the first set of four constants in terms of the ones appearing
inside the second bracket. This is accomplished by returning to (4.55) and
(4.56) and substituting a - k. The resulting relationships can be further
simplified for 2kL >> 1, i.e., for wide plates,by introducing the asymptotic

forms

/r

W_l(z) ke for z >», -m<argz<nm i (4.62)

We then obtain the following desired equation relating Sl+(k), and D1+(k)

with Sl+(an), D1+(an), etc.,

: 3 ia;2L
S14(K) ¥ 2kM, (k) < 'Zl S14(a)| e My, (al)
ExT (3 > a’”
D1+(k2 1A n=1 Dl+(an) n
- A
+ [V1+(k) + Sl_(-k)] (4.63)
and
- o 4 - iu;_l/ZZL
a L (RS LTV B L T Mo4 (%172
1£T H & . B e
Doy () - moL 0 PreSandl] | St Yo
~
+ [S,_(-k) £ iV, (k)] , (4.64)
where
s 2 ikoL H -in/4 [_'2T‘
T1 = [M1+(k)] e [1 +/_ e oL ] 5 (4.65)
T
in/4
T, = My, ()% k2l & . i ; (4.66)
/r V2k2L
The constants Sl+(an), Dl+(an), 82+(°n—1/2) and D2+(un_1/2) satisfy a set of

algebraic equations, which is derived by substituting a = a; into (4.55),

a = a;-IIZ into (4.56) and using the asymptotic representation W_l (z) and




(4.63) through (4.66) [see Appendix V]. These equations take the form:

For Sl+(un) s D1+(an) :

" s, (@)

I+ G(]')i - Gn] = P(l)i where m = 1,2,...,n1 (4.67)
n=1 |D,, (a”) s o »

1+ n

where
ia;ZL
(Dt e My ()M, (a)) [2k‘rl ;(um Qe+ k)]
mn un 1iTl am+ qn (4.68)
n l] m=n
Gm {0 m * n (4-69)
0 Case A
(4
n ?‘15111)«1 Case B (4.70)
(i) for N-even:
PO | R M (oM, (ap) [; by (a” + k) (o + k) ]
m, 2% cxl liTl (al; + a.}‘)
ia’x ia%(2L~x ):]
[e Eote L 0 L=0,1,2,... (4.71)

(ii) for N-odd

a’)(22-1) ¢ 4 M. (k)
?,;15_1 a e M (e : {1 L - 1+ 5
3 “ 71 {M~1)

> n & -
l_ tkx,) ik(ZL-xo).] 1 [ e, o+ War + ) ]
*le e = +*

. + 1 .+.T1 (mt;1 + u;)
M., (o) Cia’x ia”(2L-x ).]
e z[enoten 3. (4.72)
n”a’[1-((t-1/Yn)’]
R 980X g Ly s v




For Sz+("ﬁ-1/2); D2+(ut'l_1/2);
8y | S24Cno1/2) (2t _nf _ (22 (4.73)
" mn m m é '
n=1 D2+(an_1/2)
where
o 197 1%
i * kM o 120Me O g ))e
mn Han-l/Z
2kT, 1 : "j‘;-l/z “f gL
b O 1t WA ¥k Cpapt Gn—l/Z)”
’3(2): Case A
P;2)t } m, N (4.75)

= \\0 Case B ’

(i) for N-even:

n

2 M, (a” )
¥ =1yt 2t 2+C1/2) * 1 &
n=l (n-1/2)%; ;o [1-@/@-1/2))]
T B SR
o atK o aTE 2T, 3
: (172 ¥ %172 +1’T2'/‘ ko
bt % %m-1/2 %h-172%

F fas 1/ 0 1 ‘n_l/z(ZL-xo)]

: i (4.76)
(ii) for N-ondd:
T CO RPN 25 S TS V7 L Al BV U MR VPR T R VT e
m,20-1 9%-1/2 Co1/2* 2-1/2)
{ F 0 T SR y
g T 1 1031780 1875 579 (2exg)
1 t T2 / - . o

um—l/Z =k '/a£~-1/2 +k

(4.77)




i - i i - g b . e i i et i el aalaci i " PRy

The Ml + and M2+ functions appearing in the last few equations will now

be written explicitly. To this end, we return to the definitions of M, and

1
M2 :
My(a) = YR Sy a0 (4.78)
My(a) = e ™ cosh(yH) = M,, ()M, (a) (4.79)

where [see [10] pages 131 and 175]

sin kH iHa 27
Ml+(u) = \I-—kﬂ—‘ { [ C+2n ) -2-‘]

m o - = / e
. exp |[=—X n (E—-Y) H ; . ) " (4.80)
w k /. \ a
n=1 7
M_(@) =M (=) (4.81)

l iaH m T
| m——— - 21 e —_—
M2 (a) Vecos (kH) exp‘ 1 C+ %n (ZkH- i 2 l }

; i ' (n-1/2)w
. exp [ﬂl on “—1:—7-] |"[ ; % QG S (4.82)
¢ n=1 n—1/2
M, (a) = M, (=) . (4.83)

Substituting o = k and a = a;l into (141) and o = a”

a-1/2 into (143), we

obtain:

0

/— {[1-““( )

|—L:.| n."
-

Ix‘
-

(4.84)

=]
o B
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a” H
- - ) m~1/2 m
M2+(am_1/2) cos(kH) exp 1 . [1 - C+ fn (—

m-1/2

2k%
+15m-U2M
H

s exp | (m - l/2)2n \

k

ia” H
m-1/2
ﬂ “"”2\\ & R 155 (4.86)

p *n-1/2 ;
n=1 //

which are the desired expressions for M

1+(o¢m) and M2+(am_1/2) we were seeking.

B e p————————



V. CALCULATION OF THE VECTOR POTENTIALS

From (3.41) and (3.46) we have:

e b
¥y = 51,08 + Y,(©)] .
4 b, = 31Y,8) - ¥, (®)] 5.
Xy = 312,(8) + 2,(D)] ? (5.
28 3z, - zl(mJ . (5.

Substituting (5.1) into (3.28) and (3.29) and using (4.6) through (4.9) we

obtain:

1 -ia2L
I 2 e

=k —ia2l
I, = ; €

It is known from the theory of the integral equations that if an integral

b
equation g(y) = f g(x) K(y,x) dx + f(y) has a unique solution for every
a b
f(y) then the integral equation g(y) = f g(x) K(y.x) dx has only a trivial

a
solution g = 0. In view of this, we obtain:

For Case A:

Sl+(a) =0, D () = 0 and from (4.50) ¢, (o) =0, ¢_(-a) = 0.

Furthermore, by substituting o = -a we have ¢_(a) = 0.

For Case B:

Sz+(u) = 0, Dz+(a) = 0 and from (4.50) ¢+(0) =0, y_(-a) = 0.

Again, substituting a = -a we obtain y (a) = 0.

V(@) + ¢_(@] + 7 1, + 6,()] s.

[V_(e) = 6_(@] + 5 [¥,(@) - o, (@] . (5.

la)

1b)

lc)

1d)

2a)

2b)




R

and from (5.2)

1l -ia2L 1
2 V_(a) + 2 ¢+(G) , Case A (5.3a)

Il ; 1 ia2L 1

-ia
€ ¢_(a) + 2 ¢+(a) , Case B (5.3b)
' R 11 > Case A : (5.4a)
' 2

~-I, Case B (5.4b)

Next, inserting (5.4) into (3.32), we obtain the expression for the vector

potential

1 o+ib sinh(yy) = -iax
A(x,y) = o cosh(yH) -Il do +
2 cosh(yy)
l Fhk sinh(yH)' l
i
S Nm, sinh(yy) 5
’ o+ib cos ( 2 )cosh o) ',E’Ne iox
+ o 4 da
4H ~ot+ib sin(yl)-—-—lLCOSh( ) e
2 “sinh(yH) .
L |
I3
E m' otib
+ 711; sin () J Te o : (5.5)
cos(%ﬁz) -ot+ib
. l
b

To calculate the integrals in (5.5) we complete the contours by semicircles

in the proper haif planes. Integrands connected with Case A have poles in

-

o =ta » and integrands connected with Case B have poles in a = + k, ta”.
m-1/2 m

K
&
£
£




The result: (A)

(x,y) Case A
A(x,y) = * : (5.6)
AéB)(x,y) Case B
where
o sin[(2m - 1)my/2H]
(A) i mt+1l
(%,y) =5z 1 (-1) .
AN 2 n=1 am-1/2
N=l 2 s
[ ) Hopry2® | \® lal 1/2(x+2L)
L“’ (0% 1720 (o _y727 ©
+ (P (xy) (5.7)
n, ia” | x#x, |
m-1/2 0
Qél)(x,y) e l)5z,+1 1 y i l)m sin[(2m - l)ny/ZH]
T =1 1/2(111 1/2) [1-(9/(m 1/2)) ]
(5.8a)
iag [ x+x, |
Q) Guy) = Za;“ SHGLED S AynylgRie o - (5.8b)
1/2
and
AP ’(x,y) T [4»(“) e 2% + oM (ige “‘"‘*2‘“’]
N=0,1,.
Lo iey [ 0 B
2H le (-1) a” [¢+ (mm)e
ia” (x+2L)
T J + ofP x,m) (5.9)
where | |
io] | x+x
Qéi)(x,y) = -2%”—: cos(4n &) e e . (5.10a)
')
2) 241 1 ! 20-1)
e -
ng_ (XQY) = iu(-1) \22‘_’1 K - _E——
io” ] x+x, | 9
S R
51 el s 3 ; (5.10b)
m=1 m[1 - (%-1/2)/m) ]a;




s

— o i g

The expressions for wa)(a)

b and ¢5N)(a)
m-1/2 3
(4.60) and (4.61) by substituting S, (k) and Dy, (k) from (4.63) and (4.64),

are obtained from

a=*q a=t+tk, +a° ?
m

- ]
o =+ k,* o + am—l/2 and using (4.62).

We obtain: (N) (N) (N)
(apqy2) = Vay' Gag )+ b (ka0 (5.11)
where
2] & Alipeld ™ k My, (ar -1/2) a7/, * OH
R LY - TR
1 5 24+ 0, 17274 %172
1 =-T 9 - e r e —
£ u 0 e LT
. R g yaeb (N) ]
1 22 £ (o0 172) Mo+ (' 51/2)
A+t L 2
2’ n=1 an-l/ZV + an_1/2
0 el s ™)
il ‘z’z : (s r1y2) * 5, (°‘n V0 LTSGRy T l‘
H & (o ) |
n=1 n-1/2 m—1/2 n-1/2 v,
(5.12)
(22) 5 i - 24+1
Voo - B ) e Y PR ML) 2t
L=1,2,
s n
J 5t 22 Myelea1/2?
; T 2 2. —
\(am_llz +1(1 - T5) 0=l (n-1/2)° a]_1 11 - W@=1/2)" 17 F K
3 \ -
| & n-1/2% _| 7% | emn-z/z(z'“‘xo)
-1 +T2J
n
3 22 s - =172 Y KMy (el /)

=l (- 1/2°(1 - ‘“f“‘l/zj ‘(’{1-1/2 . “:1-1/2) %h-1/2

- . A
r
( 1lei"‘n-l/z"o O] ey R

(5. 13)
0 1J
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M, (" .,;)
(221) oy g I 4 'k, 2 p-1/2
Veo (ol qy2) =dvon otk Mo (o, -1) A
Ew3.2,..s
: 2T, Fal s Wisi72%
(Op172 ¥ WA - Todvag otk { -2
5 {'1 Boge S0 7 e S /2 b
LTZ m-1/2 %-1/2
" b1 eiai_llzxo ™ 0 eiai_llz(ZL'xo) } (5.14)
0 1 /
oM @1 = oM+ o) o, (5.15)
where
5 r A 1a “2L (N)
(N)(+k) = 1My, (K) I i Xl ; fu iy ¥
\ SRR L an i,
ia” 2L ia” ZL’-
i oL e (N)( ')M1+(°‘;)] 2 Bl = ﬁf)( )“’(N) J M )X
=1 0‘n ) n=1 %n
(5.16)
M, GOM. (o) 1 7} iagx
(22) o 2k > (_1)2,+1 Hy 1+ ; 1+ % | e 270
(= 1) % T |
L=0.0.2,04. o
-1y|  daf(2L-x)) (5.17)
+ e ’
l.o
f M, (k)
8 ZFD w1y = —Z— 1f w L —2— &
& THEE 3 2 - 12
5 o RS : \
1 tkx,, -TJ k(2% )} 71 My, (@)
. e + .e / k) W 19 5
& E 1# Qﬂ n anll-@z- 1/2)n) %)
| & & ; ' '-T ] i
., ’ 1 g eia x0+ - °eian(21’—x0) J\ (5.18)
~T 1
1
\L g
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@iN)(: L B (N)(m ) + <»(N)(+a B (5.19)
where /
ia‘ZL
(N)
2kT e (@M, (o) .
oM AR - 1 1 n’ 1+
L) (% am) 2 (am + k) Ml+(um){t il =3 ) a‘
m 1 n=1 n
ia’ZL
n (N) -
1 e (a )M, (a’)
+ : p E & 1+ an
¥ Tl n=1 an
ia 2L &
e " sV T om0 !
i e =1 . (5.20)
n=1 n m un
(a?) 2kT 7.1 ins
q,gg) ¢ 02) = ¥y 1:‘ % 1 g
) 2 (a + k)(1 - T ) -1
2=0,1, =
5% b . r
2 rl eia’Q(ZL xo) ag + k Ll eim}a 0
(a” + a
Tl j 2 0
e ~
0 iaé(ZL—xo)
* ex { *(ap H M (@), (5.21)
S 7
f
2kT :
o0 b s P A D w6y 4 ;
t m m m 1+ 'm (a‘+k)(l—T2) :
bk 5 % m 1 ]
¥ 2 Ml+(k) T;] & ikx I g ik(2L-x0)
k
(22-1) -1} Tl]
5 M., (a”) A R F—l ia” (2L-x )\
2 Z 1+ n 1} e W ah] i 0 -
a=1 nzat‘l[l (- 1/9m?) -1l ip !

|
—
&




4 M), (k) f] 0| 1ik(2L-x)

@2e-12 (%a*¥) \|o ;

+

\
n - - - 1] R

1 (an + k)M1+(an) 1 L ianxo ¥ 0 eian(ZL-xo) &
n=l na’[l - (- 1/2/0)%1@ + o)) || 0 1 |

-

(5.22)

This completes the derivation of the vector potentials. We now write
them explicitly for the two different excitations, viz., Case A and Case B,

and for the zero mode as Case A:

Ay = 0

ik|x+x l i 2 3 9 i
APy Gey) = 3 e 0%6) + l_"iz ) (et 4 o (21 (g TROe2L)

£=0,1,2,... (5.24)

N-odd
ik | x+x
1 e

(B) o 2 +1
o TR Lot e e T 7 e

£ = 1,250c0

ol

» ohe lfiZQ-l)(k)e—ikx+ q)EZSL-l)(_k)eik(xO-ZL)]

1 % =0

0 240
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VI. INVESTIGATION OF THE SPECIAL CASE WHEN ONLY THE ZERO MODE
CAN PROPAGATE IN THE GUIDE AND DERIVATION OF RESONANCE CONDITION

From (5.15) through (5.18) we have

ik|x+x | ikx
Aoty = e 0 By )% O Ler u 0 e
Apo(en =0 L1z, (6.2)
L+1  ik|xtx, | % ikx
(B) iy (-1) 0' | i(-1) 3 H%g
A20-1,0%9) = T@EDE e *a@eDk M7
AT Y
“LOT, s %y4%) (6.3)
where
i ik2(L-x.)
L(T, ,x %) = —2 ! i 0’ | -ikx
20 (l—TZ)\ 1
1

-ik2 (L-x.) ik2 (L-x.)
+ [1 - Tle 0 ]e 0 eik(’&ZL)} v (6.4)

If k(L - xo) =nv where n =0, + 1, + 2,...,+ n

;y n, satisfies inequalities
33 1

i
Ny & <L
e (6.5)
T
(n3 + 1) s L
or
nmn
s e
Then
, 1 -ikx ik (x+2L)
L(Tlxogx) g S S nn (1 + Tl) [e + e -} (6-6)
0 k
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and the resonance condition is

if 2k (L-xo) = (2n+1)T

or

= 1 2otD)w

*0 2k

where n =0, +1, ..., + n,s n4 satisfies inequalities:

(2n4 +1)m

2K b

(2“4‘*'3)'"

%

<l 1 -ikx
Ehen LET,X0 0% o - g SEBRANE © UT-TE) [f

0% 2k

ik(x+2L)}
-e




and the resonance condition is

We can rewrite (6.12) as

P60 S fasy (6.13)
where
-im/4
£=1+ 9-/_* % ) (6.14)
m L

The expression Ml+(k)’ as given in (4.84), can be simplified for the case

when only the zero mode can propagate in the guide. For this case we have

-
b

Ml+(k) = exp{ 1 HTk Ll - C+ ln( ) + %]+ izzl [%-arcsin(%q} (6.15)

Let us investigate the case

élq < et g ) (6.16)

returning only the terms with an accuracy 0[?%]. We then have

£=1+06E (6.17)

[M+(k)]2 - exp{\iZ Hk E - C+ 1n ( ) + i ]:}[} +0 (kL-] (6.18)

The resonance conditions for this case reduce to

exp{12~—['_1-c+1n( =y +4 2 J+iZkL\=tl . (6.19)
i




For the choice of a positive sign in the r+h+s: of (6.19) we get
Hk 2m 1r
exp {12 HE-c+maEp+13])+ iZkL} = +1 = exp(i2nm)  (6.20)

or

Hk : 2 m
3= [1 -C+ ln(ﬂ+ i 5]+ 2kL = 2mm (6.21)

where m is an integer. Since (6.21) implies that m >> 1, we can rewrite it as

PRI . L A ul
£ =m — [ln (HE) + 1 C+In2+1 2] (6.22)

where

g = kL . (6.23)

Solving (6.22) by the iteration method we obtain:

2
Hm L Hm m Hm . 2,L:
£(+) LU 1n (Hm)-L (l-C+1r12+12)+0LTLZ 1n (Hm)
(6.24)
and
k(+) = k1+ + 1k2+ (6.25)
where
mn  Hm L Hm
k1+ T "3 ln(Hm) S (1 - C + 1n2) (6.26a)
L L
Hm
k2+ =280 ‘ (6.26b)
L
In a similar manner for the choice of negative sign in (6.19) we obtain
1 Hm L Hm m H Hm
5(_) (m+2)1r- L 1n BT (! C+1n2+12)+0LL 1n(L)] (6.27)
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Rey * Ky 1k,

Hm L Hm
= In (ﬁip - ;f (1 -C+ 1n2) (6.29a)

L

(6.29b)
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VII. INVESTIGATION OF THE GENERAL CASE WHEN MORE THAN ONE MODE CAN PROPAGATE

As a first step we show that the resonance condition is no longer given

by the conventional formulas T1 = *+ 1 when more than one mode can propagate

in the guide.

Let us consider the case T1 ~ -1, Then from (4.67) we have

n 7 B
1 exp(ianzL) nln Ml+(an) L [v (k) ~— ’g (—k)]
g 1+ ¥
n=1 B

where we have used
Sl+(am) = M + nzm(l + Tl) el s
Inserting (7.1) in the equation for ¢+(kL we obtain
o (k) = 0[(1+ T)?]
+ 1
It is possible to show in the same manner that
0
®_(-k) = 0[(1-T)"] .

The resonance conditions are given by

Case A: ’G(z)t < &% =@
mn m

Case B: lG(l)t M 0
mn m

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

e
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VIII. SUMMARY OF RESULTS

In this work we have addressed ourselves to the problem of a
finite-width, parallel-plate waveguide excited by a source located in
the interior of the guide. Two types of sources have been investigated,
viz.:

Case A:

g Noy, 18z . _
J=y 6(x+x0) sin (ZH) ert Nem 1 2

Case B:

J=y 6(x+xo) cos (%£¥) eiBz’ Ni= 0,12, .

We have assumed that the current has only a y-component and that
B is real and greater than zero. Using the vector potential approach,

we havereduced the original problem to that of solving the inhomogeneous

wave equation (3.8) together with the boundary condition stated in (3.9).

Next, two coupled equations for four unknowns (Yl, Y2, Z1 and ZZ) have
been derived where these unknowns are related to the vector potential
at the extensions of the parallel plates. These equations read

[same as (3.40) and (3.45)].

2L ©
f oy (OR, (k|x-c]ag + é 2 (DK, (k|x-£])dE = £ (x)

-—00

where the functions fi(x) appearing in the r+-h-s are related to the
prescribed source and are given in (3.43), (3.44), (3.48) and (3.49).
The kernel functions Ki appearing in the integral equation may be found
in (3.42) and (3.47).
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Our next step was to solve the integral equations using Fourier
transforms and the Wiener-Hopf technique. The results for the vector
potential constructed in this manner are given in (5.6) through
(5.22) for both cases considered. We have shown that there is no zero
mode excited in Case A,and in Case B this mode is excited only when
N < 2Hk/m, if N is even. For N odd, the zeromode is always excited
in Case B.

An important result of the analysis presented here is the expression
for the resmance condition. We have shown that this is given by

2 12kl e

T = (M1+(k)] e +1

where f =1 + e_:l'"/l.(-rr)“l/2 Hk/ /KL

and Ml+(k) is given in (4.84).

For (%%)2 < i%—<< 1 the function f above can be replaced by unity and

the resonance condition is correspondingly simplified. It is interesting

to note that for the source located at xO = L - nm/k the resonance

condition is reduced to Tl = -1 whereas for xo =L

same condition becomes Tl = +1. 1In general both the plus sign and the

minus sign are admissible for the resonance condition. Equations (6.25)

the

_ (5w
k

and (6.29) state the resonance condition under the constraint that only
the TEM mode can propagate in the infinite, parallel-plate guide. For
the more general case, the condition for resonance is given by (7.5) and

(7.6) and an examination of this reveals that T = +1 no longer represents




the resonance condition for this general case. We point out that the
resonance condition is useful for solving the complex (leaky) modes .
in such open waveguides.
We also draw the attention of the reader to the fact that the
resonance condition derived herein is in general more accurate than
that given by previous workers. We show, however, in Section 6 that
when the condition on the waveguide parameters as expressed by (6.16)
applies, the resonance equation reduces to that obtainable by multiple
reflection method applied to semi~infinite parallel-plate waveguides,

a technique that has been used in the past by other workers [7,8].




APPENDIX I
The general solution of the equation
; 2
3 ¢ 2
—5 - 8(g) = Elx) (I.1)
. ay
is
54
o(y) = EleYY+ Eze‘“’ +% J £(£) sinh[y(y - £)1dE . (1.2)
0
For
sin(N“g) iaxo
f(g) = - (1.3)
cos( )
we have
Yy S o5 Sm( )
o(y) = Cie’” + Che + Ty (1.4)
cos(—z)
where
5 e—iaxo
T, ==K . (1.5)

N Y2+ lN'IT/QH)\Z




s T

APPENDIX II

Write (3.40) as

YH H

]
-
I
e

e =Y
Cl'ye CZYe

1 1 (II.1a)

ol o B
e iR T (I1.1b)

where

cos(M)
T e ? (11.2)
1,2 N 2H e sin(b;—“)

The solution of the system equations (II.1) is

-

Nm
- 1 YH ~YH ~yH | ~ Nr | ~€0s(57)sinh(yH)
1" Bim@my (0 - L - LT M % (11.3)
gl sin(—z-)cosh(yH)
and
. X
Nw
g 1 -vH YH .~ Nm cos(2 ) sinh (yH)
©2" Bmmaeymy \ 1 - Ll r T, F & {TT.4)
sin(—z—)cosh(yH)

e i D Ao



APPENDIX III |

The continuity condition of the vector potential across the boundaries
-® < x <=-2L, 0 < x <o fory=+H and y = -H is given by (3.44). Substi-
tuting the expressions for the vector potential for all three fields from |

(3.38), (3.39) and (3.43) into (3.44) and changing the order of the

integrations gives

-2L @
f K k[x - gDae + { n k) Gelx - ]ae
(%) k) ) i1
-[ “’2"2,1“"" - &£lag - j X3, 1klx - g])dg = }‘l’z(x) (111.1) ¥
£ 0 E
!
where i
= kg exp(2ﬁy)l ia(&-x) |
K, Jklx -E) === f |
T2 2m 1 Ssinh (20 ) (LTI 2) |
—=+ib % y |
v W ot cos¢—~)tanh(yH;, f;e-iax {4
l,Z(X) 5 f sin(-—0c0th(YH) Y o f
—wtib r
Nm o+ib
5o i & —iox
o Nt TNe da (I11.3)
L o8] canin

N
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APPENDIX IV

We are interested in calculating the integrals:

i
ik 1 8 S ;
2ni (C-K)M, _(2)(z+a)
1d-o (P14} $

Multiplying the numerator and denominator by M1+(CL we obtain

id+ eic2L eYH

1 §4(8) ;
-2 |

1d~e | P14+(8)

M, (%)
(2 - k) (z +a)sinhGH) AH

dz (Iv.1)

We have branch cuts from k to Rek + i» and from -k to -Rek - ico,

Closing the contour with a gemicircle in the upper half and using the

theory or residues,we get

ei;ZL eyH

N w1 72 e
M, (2) dg ool sl+(an)-}e nLM1+(an)(an+k)

g f Sl+(C)
2ni (2 - k) (¢ + a)sinh (YH)/YH

a’(a + a”)
c D1+(C) n n

e N
n=1 D1+(“n21

(1Iv.2)

o el av.
¢ G

It can be shown that f + 0, when R » ». Calculating f when 1 > 0 gives
G C

R T
) $.000] e o
" — . (1IV.4)
27i D. (k) o+ k
Ct 1+
>0
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Contour for integration of the integral
I In (IV.1)




For f + f , taking note of the fact that ch - k2 has the + sign
c c
on the riggt-hand3side and the - sign on the left-hand side oi the cut,

B

respectively, we get

Sy
. izg2 e
1 f b I g []514+9) ] e LM1+(C) Ltk

. . A (1Iv.5)
D1+(c) o=k (z+a)

Rek+ie
To calculate the integral in the rehes+ of (IV.5) for large guide width, i.e.,
k2L>>1 we note that the integrand decreases exponentially along the path of

integration from k to k + i». This allows us to expand

s, (2)
BN NG
D, (2)

in a Taylor's series and retain only the first term for asymptotic evaluation.

This gives the rehess of (IV.5) =1

k
é. S. . (k) iz2L
3 ~ H [ 1+ f e .
= M, (k)V2k g -
1 "y 1+ (c + o)/t - k °°
1+ Rek+ie
Introducing a new variable u
™
%
(¢ - k)2L = iu , /;—k=»2‘£c
2L = fu + 2L dc = = du
(5 u ’ 2L
we obtain
g |S14® 4% e of
Le=c= M (k)V2k V2L e " e W_ [-i2L(a + k) (1V.6)
Dy, (k) . i

54




where

e

W_ [-12L(a + k)] = [

0 Yulu -

1k2
s LM1+(k)

From (IV.2) through (IV.6) we get
o + k
3

14 (K)
I =
1+ (K
-i=x
n

Be /K VL (o + 1) W_, [-i2L

ia”2L
M1+(an)
an(a + an)

Sl+(an) .

+
+ 7
ool D1+(“n),

Note that in (IV.8) we have neglected the exponentially decreasing terms
in the summation.

In the same manner we can show:

du . (1v.7) |
12L(a + k)]

(o + k)]

(1v.8)

dr,
(k)
My (k) -
D2+(k)
By 912 070 -1/2

id4o [
& §,.(2) e 122L
2ni ——
g eL % 1K2L
=—e V2L W_; [-2L(a + k) Je
ia” 2L
n b n-1/2
Y 52 4095172’ ©
H "
n=1

Dorlaf 172

(1v.9)
n-1/2(“ s




APPENDIX V

In this appendix we discuss the problem of deriving the systems of the

equations that are satisfied by the constants Sl+(un), D1+(an), 82+(an_1/2),

(a 1/2) We present only the calculations for Sl+(an) and Dl+(a )

because the same procedure can be followed to solve for the other constants.

After substituting a = a into (4.55), and using the expression (4.63)

together with the asymptotic form of the function W_I[—ZL(a + k)], we have

n

5 51,.@) [“) 6{]=Pf¢t TG v.1)

n=1

(a )Ml+(a ) 2kT1 (a + k)(a + k)w

a’ 10 a’ + a” J (v.2)
n 1 m n

{Zle

t M, () \} 0, [V, (&) ¥ S (K] * (o RtV ()

1-Cop )1 (v.3)

_(-o) | , we insert

To calculate the constants Vl+(a)|a= a' and S a=k,a!

the expressions for H1+(C) from (4.17) into (4.39), (4.48) and substitute

=k and a = a;. This yields certain integrals which we can calculate

using the theory of residues. We are interested in examining two cases
a) N-even; b) N-odd. Substituting results into (V.3) we obtain the

expressions for P(l)‘. In the same manner we have obtained results for Case A.
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